

playbook

thoughtbot

March 10, 2016

Contents

Hello vi

Products 1

Product Design Sprint . 1

Prep Work . 1

Understand . 2

Diverge . 3

Converge . 5

Prototype . 6

Test and Learn . 7

Choose Platforms . 8

Web Apps . 8

Mobile Apps . 10

Programming Languages . 11

Frameworks . 11

Databases . 12

Licenses . 12

Laptop Setup . 14

i

CONTENTS ii

Laptop . 14

Dotfiles . 14

Text Editor . 14

Planning . 15

Daily Standups . 15

Tasks . 15

Weekly Meeting . 18

On-site Customer . 22

Remote Work . 22

Altering the Process . 24

Designing . 25

Sketches . 25

Wireframes . 25

User Interface . 27

Interaction Design . 28

Visual Design . 28

User Interviews & Usability Testing 33

Developing . 34

Version Control . 35

Style Guide . 35

Pair Programming . 35

Test-Driven Development . 36

Acceptance Tests . 37

Refactoring . 37

Code Reviews . 37

Continuous Integration . 38

CONTENTS iii

Production . 40

Checklist . 40

Domain Names . 41

SSL Certificates . 41

Hosting . 42

Performance Monitoring . 42

Log Collection . 43

Error Tracking . 43

Transactional Email . 43

Payment Processing . 44

Measuring . 44

AARRR . 44

Instrumentation . 45

Subscription Metrics . 47

A/B Testing . 48

Feature Flags . 49

Our Company 50

Principles . 50

Principle Zero . 50

Minimize Hierarchy . 50

Transparency . 50

Honesty . 51

Trust . 51

Continuous Improvement . 51

Time . 51

CONTENTS iv

Consulting . 52

Investment . 52

Sales . 53

Leads . 54

Understanding Product Vision . 55

NDAs . 55

Roles . 56

No Fixed Bids . 57

Budget . 57

Rate . 58

Typical Projects . 58

Contract . 59

Invoices . 60

Hiring . 60

Recruiting . 61

Interviewing . 61

Offer and Onboarding . 63

Compensation . 64

Quarterly Reviews . 65

Operations . 65

Expenses . 66

Email . 66

Calendar . 66

Documents . 67

Meetings . 67

Accounting . 68

CONTENTS v

Legal . 69

Sharing . 69

Blog . 69

Twitter . 70

Research . 71

Open Source . 72

Goodbye 74

Hello

We are thoughtbot. We partner with organizations of all sizes to design, develop,
and grow their products for iOS, Android, and the web. We have worked with
hundreds of product teams all over the world, from individual founders who are
self-funded, to large multi-national organizations. We have also created our own
products and dozens of open source libraries.

This is our playbook. It details how we make successful web and mobile products,
and also how we run our company. It’s filled with things we’ve learned based on
our own experience and study of others’ experiences.

It is a living document that everyone at thoughtbot can edit in a private GitHub
repo.

We’ve made the playbook free and licensed it as Creative Commons Attribution-
NonCommercial so you may learn from, or use, our tactics in your own company.
While our “plays” have worked for us, we trust your judgment over ours to decide
which tools and techniques might work for you, too.

Figure 1: Creative Commons Attribution-NonCommercial

While we’ve tried to make this Playbook as comprehensive as possible, some of
our work is very technical, such as our Git protocol for feature branches. Look in
our public thoughtbot/guides GitHub repo for that kind of information.

vi

http://creativecommons.org/licenses/by-nc/3.0
http://creativecommons.org/licenses/by-nc/3.0
https://github.com/thoughtbot/guides

Products

Product Design Sprint

“ “Most peoplemake themistake of thinking design iswhat it looks like.
People think it’s this veneer— that the designers are handed this box
and told, ‘Make it look good!’ That’s not what we think design is. It’s
not just what it looks like and feels like. Design is how it works.” -
Steve Jobs

Product Design Sprints, an invention of Google Ventures’ design team, are 5-phase
exercises intended to improve the chances of making something people want. We
want to turn false confidence into validated confidence before beginning an ex-
pensive build. Or, we want to dodge bullets by learning we shouldn’t begin the
expensive build at all.

Sprints are useful starting points when kicking off a new product or workflow, as
well as solving problems with an existing product. They typically last 5 days but we
have done them in less time. We get as many stakeholders and expertises in the
room as we can.

Product design sprints are test-driven design.

Prep Work

Before the sprint, our clients schedule 5 real humans for the tests we’ll do in the
last phase. They know their users better than we do.

1

http://robots.thoughtbot.com/the-product-design-sprint
http://www.gv.com/design/
http://paulgraham.com/good.html

CHAPTER 1. PRODUCTS 2

Figure 1.1: Sprint Phases

They also gather research from sources such as:

• Quora
• Google Analytics
• Adwords Keyword Planner

We may also do some (paid) prep-work:

• Schedule and run user interviews.
• Deploy a short survey whose results we can review in the first phase.

We typically order breakfast for the first day to make it feel special but don’t order
lunch for each day of the sprint. For both the sprints and normal days, we believe
it’s important to not have “working lunches”, instead breaking from work for a
short time to rest the brain,maybe get some fresh air, and interactwith teammates
and clients.

Understand

The exercises in this phase help us understand and empathize with the users’ life
(consumer software) or work (business software) needs.

Throughout the phase, people take notes, often on sticky notes that they stick to
the walls of the room.

http://quora.com/
http://analytics.google.com
https://adwords.google.com/ko/KeywordPlanner/Home
http://www.nngroup.com/articles/interviewing-users/
http://www.google.com/insights/consumersurveys/use_cases

CHAPTER 1. PRODUCTS 3

We start with “pitch practice”, where the client pitches their product like theywould
to investors. This helps us identify the user, their problem, and the job they are
hiring the product to do. It also begins documenting the vocabulary used in the
domain.

We then review research from Quora, Analytics, AdWords Keyword Planner, in-
terviews, and surveys. This helps us understand users’ motivation, the marketing
funnel, and the size of target markets.

Lastly, we sketch what the rest of the sprint will focus on: the critical path for the
software. At this point, we try to keep this high-level and as light on implementa-
tion details as possible. A great question to help generate the critical path is:

“ What job is the user hiring the product to do?

Figure 1.2: Critical Path

We will edit the critical path as we move through the phases.

Diverge

The exercises in this phase help us exhaust our imaginations for potential solu-
tions that meet the users’ needs.

Before this phase, the team naturally walks around the room reviewing the walls,
covered in the critical path and lots of sticky notes.

We start with “pitch practice” again, comparing to the critical path.

http://martinfowler.com/bliki/UbiquitousLanguage.html
http://martinfowler.com/bliki/UbiquitousLanguage.html
http://www.youtube.com/watch?v=f84LymEs67Y

CHAPTER 1. PRODUCTS 4

We then have each person individually sketch 10+ user flows and user interfaces.
We ask people to include the sources where the customer will come from: Twitter?
A blog post? AdWords? Automated suggestions? Drip email? Referral from a
friend? Push notification?

Should the product become realized, these sources should eventually be mea-
sured in Google Analytics’ “Acquisition Channels” report:

Figure 1.3: Acquisition Channels

We then put those sketches on the wall and begin a silent critique, observing and
putting dot stickers on different parts of the flows and user interfaces that we like.
This helps visually identify the best ideas.

We then do a group critique, three minutes per idea. The group explains their
dots. The author can then add any extra commentary. We don’t shoot down any
ideas or start winnowing. This voting process helps avoid long discussions and
design-by-committee.

Lastly, we do a “super vote” with larger, red dot stickers. The CEO or other product
owner will place a single “super vote” on what they think is the best idea. This
helps us reflect the reality of how their organization makes decisions and affirm
their ultimate authority.

Our experience has been that this phase is mentally exhausting. We recommend
ending early and sending people home to re-charge their batteries.

https://signalvnoise.com/posts/1926-a-shorthand-for-designing-ui-flows
http://analytics.blogspot.com/2013/10/new-acquisitions-reporting-channels.html
http://www.amazon.com/dp/B002M3SBM2

CHAPTER 1. PRODUCTS 5

Converge

The exercises in this phase force us to stop generating new solutions, converge on
the best, and write the test for the prototype.

First, we identify assumptions we’re making in the best ideas. We list all assump-
tions about users’ motivations, the business model, our ability to acquire users,
and our ability to implement the solutionwithin budget. This helps eliminate some
options.

Figure 1.4: Assumptions

We then look for conflicts in the remaining sticky notes, user flows, and user inter-
faces: ideas that aim to solve the same problem in different ways. We eliminate
solutions that can’t be pursued currently.

We then decide whether we’re creating one prototype (“best shot”) or multiple
(“battle royale”). Multiple prototypes are more initial work but may reveal more
dead ends and help us dodge more bullets without running follow-on sprints.

We then storyboard each prototype. This is a comic book-style story of our cus-
tomer moving through the critical path.

Lastly, we create the testing script in Google Docs and put the scoreboard on the
wall of the observation room. The script is based on the storyboard and the score-
board will be used to record the results of the test. This helps us be very explicit

CHAPTER 1. PRODUCTS 6

Figure 1.5: Storyboard

about what we’re trying to learn.

Prototype

After another pitch practice to rally the troops, there are no exercises in this phase.
It is entirely focused on building the right prototype(s) with just the right amount
of fidelity to generate useful test results.

For the entire phase, we ask our clients to write copy text in Google Docs. They
write real text, not lorem ipsum, in order to test user understanding and enthusi-
asm. This text is also useful later for tweets, press, ad copy, landing pages, etc.

While our clients are busy getting communication polished, we are heads-down
prototyping. We use different tools depending on the designer and the project.

For web app prototypes, some good options are:

• Squarespace templates
• Bourbon + Neat + Bitters locally
• Invision

http://gettingreal.37signals.com/ch11_Use_Real_Words.php
http://www.squarespace.com
http://bourbon.io
http://neat.bourbon.io
http://bitters.bourbon.io
http://www.invisionapp.com

CHAPTER 1. PRODUCTS 7

For mobile app prototypes, some good options are:

• Flinto + Sketch
• Prototyping on Paper

Don’t try to learn these tools during the sprint. Get familiar with them during in-
vestment time. During the sprint, use one that you’ve mastered.

Test and Learn

Finally, we interview 5 users to test our understanding of them, their context, and
our prototype. This is not a usability test. We begin the conversation as an inter-
view before showing them the prototype.

One of our designers interviews each user. We set them up in an interview room
with video and audio streaming to the observation, where the rest of the stake-
holders are watching, discussing, and recording answers on the scoreboard.

Good questions are open-ended to allow users to tell stories.

“ “Could you tell us about a time you donated to a non-profit?”

Don’t lead users to an expected answer.

“ “Would you donate money to a public school if you could?”

Don’t close the conversation.

“ “Have you donated money to an organization within the last week?”

For a new product, it’s unlikely that any team will nail it their first sprint. The most
likely outcome is that we’ll want to run a follow-on sprint starting at Diverge or
Converge and test again with a new users.

After one or two sprints, we typically have many assumptions validated, a clear
critical path established, and are ready to begin coding a first version to release to
a wider audience.

https://www.flinto.com
https://itunes.apple.com/us/app/sketch/id402476602?mt=12
https://popapp.in/

CHAPTER 1. PRODUCTS 8

For web apps, we can typically ship a first version in 4-6 weeks. For mobile apps,
we can typically ship a beta via HockeyApp in 6-8 weeks and ship to the App Store
in 8-10 weeks.

Given those timelines, spending an extra 2-5 days doing a second or even third
truncated product design sprint is worth the opportunity cost of spending 4x-10x
more time and money to learn we bombed.

Another outcome is that there’s no clear user pain, or the businessmodel ismurky,
or everything we thought we knew was proven wrong. That’s an emotional blow,
but a success. Time and money were saved.

We end the phase with a plan for moving forward.

Choose Platforms

Early in a project, we have to decide which platforms we’ll use.

Which platform depends on our ideas for solving these users’ problems. For ex-
ample, if they’re construction workers on a job site, a mobile or tablet interface
might be the best choice.

After considering what’s best for users, what’s best for us?

• The tools are open source with a strong community
• The tools make us happy
• The tools help us create and iterate quickly

Web Apps

In our experience, teams using the Ruby on Rails framework can bring products
to market more quickly and with a lower total cost of ownership than other tools,
because the framework itself and surrounding community embrace a “conven-
tion over configuration” mindset. This means that one Rails app’s codebase will
look very similar to another Rails app’s codebase, and the team will find them-
selves in familiar technical territory, freeing them up to focus on the product in-
stead of wrestling with the code. There’s also strong overlap between the agile

http://hockeyapp.net/
http://rubyonrails.org/

CHAPTER 1. PRODUCTS 9

and Ruby communities, which means (among things) that Ruby developers tend
to write tests, use object-oriented design, and avoid repeated code.

Maybe the greatest compliment we can pay to Rails is that we’ve made an exis-
tential financial commitment to it, betting the future of the company on it in 2005,
and we’re still here.

In return, we’re proud of our contributions to the community, in particular our
open source libraries and articles on our blog, GIANT ROBOTS SMASHING INTO
OTHER GIANT ROBOTS.

In addition to Ruby, we use other open source software and web standards such
as HTML, CSS, JavaScript, UNIX, Vim, and Postgres because they:

• Are high quality.
• Avoid vendor lock-in.
• Provide flexibility to switch components.
• Work on many devices.
• Are battle-tested.
• Have few bugs when seen by many eyes.

Ruby on Rails comes with features that decrease the burden on the programmer
to protect against security attacks such as:

• Cross-Site Scripting (XSS)
• Cross-Site Request Forgery (CSRF)
• SQL injection
• Header injection
• Sensitive data in logs

Rails helps us do the right thing with regards to security but we are still required
to be diligent, knowledgeable, and test comprehensively. For more information,
see the Ruby on Rails Security Guide.

We support Internet Explorer 10.0+ and the latest versions of Firefox, Chrome, and
Safari. We do not support Internet Explorer 6, 7, 8, or 9. Those browsers are losing
market share, they have security issues, and they are time-consuming to design
for, develop for, and support.

https://github.com/thoughtbot
http://robots.thoughtbot.com
http://robots.thoughtbot.com
http://guides.rubyonrails.org/security.html
http://en.wikipedia.org/wiki/Internet_Explorer#Market_adoption_and_usage_share
http://en.wikipedia.org/wiki/Internet_Explorer#Market_adoption_and_usage_share
http://en.wikipedia.org/wiki/Internet_Explorer_6#Security_issues

CHAPTER 1. PRODUCTS 10

On mobile devices, we support iOS Safari 7.1+, Android Browser 4.4+, and the
latest version of Chrome for Android.

In limited special cases, user demographics will dictate that supporting an older
version of Internet Explorer is required. Those special cases should be identified
early on so we can plan for additional time and expense in order to support the
version.

Mobile Apps

“Mobile” refers to the user, not the device.

Everything about how we design a mobile application has to be in the context of
that idea. It raises questions like:

• Are they moving?
• Are they relaxed on a couch?
• How dexterous are their fingers?

We try to start with the most usable platform first. If the device needs the camera,
calendar, or address book, a “native” app like an iPhone or iPad app may be the
right choice.

For other products, especially content-only products such as text, images, videos,
and landing pages, a mobile web app makes sense because:

• All modern smart phones can render HTML.
• Bourbon and Neat make “responsive” designs easy to implement.
• We can create and iterate quickly.
• We can deploy new versions multiple times a day.

Our mobile developers’ expertise is with the Objective-C, and more recently Swift,
programming languages and iOS frameworks such as Cocoa.

We don’t take on Titanium or PhoneGap projects because of:

https://github.com/thoughtbot/bourbon
https://github.com/thoughtbot/neat

CHAPTER 1. PRODUCTS 11

• Cost: it is a costly burden on our designers to try to design for the iOS and
Android platforms at the same time. The differences in screen sizes, resolu-
tions, aspect ratios, and expected user interface patterns require different
design solutions.

• Early access to upgrades: Apple’s NDA forces 3rd party apps like Titanium
to wait until new iOS versions are released to the public before they can
code against them. Working the way Apple recommends, we get access to
new versions months early. We can use new features earlier to make the
app feel more modern. We can use the new ways of doing things to save
lines of code and time.

• Quality: Appcelerator, like past cross-platform technologies such as Adobe
Air or Adobe Flash, provide a least-common denominator user experience.
They may or may not be compiled to “native” code but they rarely achieve
a “native” feel.

Programming Languages

Examples of languages we typically use are:

• Ruby: our server-side preference
• CoffeeScript: our client-side preference
• Swift: the language for iOS apps

“Server-side”means code that is run on servers providedby the application hosting
company. “Client-side” means code that is run in users’ web browsers.

Frameworks

Ruby on Rails, Node.js, and other libraries are frameworks that require developers
know the underlying language such as Ruby or JavaScript.

Examples of frameworks we typically use are:

• Ruby on Rails
• jQuery

CHAPTER 1. PRODUCTS 12

• Angular.js
• Ember.js
• iOS Core Data

A framework is a library that makes performing a particular task in a program-
ming language easier. Like the framework of a house, it is there when we begin
programming and is always there giving the program structure and support.

It can be difficult to switch from one framework to another. The more code that’s
written specifically for Rails, the harder it will be to switch to Django. That would
approach “total rewrite” territory.

Databases

For data that must be saved and stored correctly, we use PostgreSQL (we usually
refer to it as “Postgres”).

It’s a 30 year old open source database that is highly respected, well supported by
documentation and hosting providers, and used by any developer who knows the
SQL standard.

In recent years, a movement called NoSQL has gained popularity. Best translated
as “not only SQL”, tremendous effort has been made to create different kinds of
databases for different use cases, often based off academic or industry research.

Our most frequently used NoSQL database is Redis, which we use for storing tran-
sient, high quantity read/write data such as activity feeds, tags, background jobs,
sessions, tokens, and counters.

Redis is reliable, open-source, and simple. It offers high performance and reliable
predictions of its performance. It can flexibly model different data sets but we typ-
ically use it for small data structures, not large images, videos, or text documents.

We typically use Redis to Go to host our production Redis databases.

Licenses

In contrast with a proprietary license, the source code of an open source program
is made available for review, modification and redistribution. The difference be-
tween open source licenses is what we can and can’t do with the source code.

http://www.postgresql.org/
http://en.wikipedia.org/wiki/NoSQL
http://nosqlsummer.org/papers
http://redis.io
https://redistogo.com/

CHAPTER 1. PRODUCTS 13

Open source licenses can be divided in two categories: permissive and copyleft.

Permissive examples include:

• Berkeley Software Distribution (BSD) licenses
• MIT license
• Apache license

A copyleft example is the General Public License (GPL).

Both categories have the purpose of establishing the copyright holder for the soft-
ware, granting users the right to copy, modify and redistribute it, protecting the
copyright holder from any potential guarantees that the software may provide
(software is provided as-is), and optionally imposing some restrictions.

Permissive licenses let usmodify a program, redistribute it, and even sell it. We can
embed or link code with other programs without restriction or explicit permission
by the copyright holder.

Copyleft licenses only allow us to link or distribute code with other code that has
the same license. It also forces modifications to be released under the same li-
cense. Combining anything with the GPL makes it GPL.

Non-copyleft licenses do not enforce derivative works to also be open source.

Some software is released under a dual license: both a permissive and copyleft
license. This provides developers who use the dual licensed code to apply the
license that better suits their needs.

Most of the software we use has a permissive license:

• PostgreSQL, PostgreSQL License (BSD based)
• Redis, BSD
• Ruby (MRI), Ruby license (BSD based)
• Ruby on Rails, MIT
• jQuery, Dual MIT and GPL

http://en.wikipedia.org/wiki/BSD_licenses
http://en.wikipedia.org/wiki/MIT_License
http://en.wikipedia.org/wiki/Apache_License
http://en.wikipedia.org/wiki/GNU_General_Public_License

CHAPTER 1. PRODUCTS 14

Laptop Setup

Your laptop is your sword. Don’t go into battle without it. To get started quickly
with a standard configuration, we’ve created a setup script called Laptop and these
dotfiles.

Laptop

Laptop is a script to set up a Mac OS X or Linux laptop for Rails development. It
should take less than 15 minutes to install.

This sets up compilers, databases, programming languages, package manage-
ment systems, installers, and other critical programs to our daily programming
activities.

Dotfiles

‘Dotfile’ is a generalized term for a UNIX configuration file, typically prefixed with a
dot (e.g. .vimrc) and found in your homedirectory. Most UNIX programs, including
Vim, will load a dotfile during launch.

We recommend using dotfiles to customize your tools and environment to suit
your preferences, reduce typing, and get work done. Check them into a git repos-
itory for safe-keeping and open-source for the benefit of others.

You can use our dotfiles to make pair programming with teammates easier and
make each other more productive.

Text Editor

“ Plain text won’t become obsolete. It helps leverage your work and
simplifies debugging and testing. The editor should be an extension
of your hand; make sure your editor is configurable, extensible, and
programmable. -The Pragmatic Programmer

Almost everyone at thoughtbot uses Vim as their text editor.

https://github.com/thoughtbot/laptop
https://github.com/thoughtbot/dotfiles
https://github.com/thoughtbot/dotfiles
https://github.com/thoughtbot/laptop
https://github.com/thoughtbot/dotfiles
https://upcase.com/vim

CHAPTER 1. PRODUCTS 15

When we use Vim, we type few characters and avoid the mouse. We’re productive
and more easily achieve flow.

It’s great because:

• Vim is tiny (1.6MB) and starts up instantly.
• Vim is a well-polished stone by virtue of how long it has been around. It
was introduced in 1991 as an improvement on Vi, which itself was written
in 1976 by Bill Joy.

• It has a rich ecosystem of open-source plugins.

Planning

One of our primary process goals is to make frequent, small releases of our work-
ing software.

This section describes how we achieve one week’s worth of iteration on a product.
It lays out the process we follow and some communication tactics.

Daily Standups

Every morning, we get together as a team for 10 minutes at 10 AM.

We say what we did yesterday, what we’re going to do today, and if anything is
blocking us. We immediately resolve blockers or help the person after standup.

We do this in order to:

• See each other face-to-face.
• Learn what others are doing so you can help them.
• Build accountability and trust.

Tasks

We have used JIRA, Pivotal Tracker, Lighthouse, Basecamp, Trajectory, Unfuddle,
and other task management systems over the years. The following section details

http://en.wikipedia.org/wiki/Bill_Joy
http://www.extremeprogramming.org/rules/releaseoften.html

CHAPTER 1. PRODUCTS 16

a process using Trello but the overall process remains relatively similar across dif-
ferent systems.

No two products are the same, so flexibility in the product development process
is important. Trello responds well to changing the structure of the process “on the
fly.”

A Trello board is a software equivalent of a physical wall with columns of sticky
notes. In Trello terminology, the wall is called a “board.” The columns are called
“lists.” The sticky notes in columns are called “cards.”

In the following image, “Current” is an example of a board. “In Progress” is an
example of a list. “Confirm Internet Explorer support” is an example of a card.

Figure 1.6: Next Up Trello board

In any task management system, it’s important to have a view into the product
development process like this. The Next Up list is the single prioritized list to which
the product team refers in order to know what to work on next. It represents one
week of work.

A card represents a jobs story, bug fix, engineering task, or general todo.

Cards start out as a simple idea, 1-2 sentences long. As they are pulled through
boards, detail is added, explaining why (from a business perspective) we’re focus-
ing on it, and maybe notes on suggested implementation (though designers and

CHAPTER 1. PRODUCTS 17

developers may take or leave it at their discretion; it’s supposed to be helpful, not
prescriptive).

Figure 1.7: Live Trello board

Once the cards in the Next Up list have been prioritized and vetted, they are ready
for design and development. A designer or developer “puts their face on it” by
assigning it to themselves and pulling it into the In Progress list.

The cards in the In Progress list are actively being designed or developed. Etiquette
is that you should never have your face on more than two cards at a time. Work is
done in a feature branch.

When a designer or developer creates a pull request for their feature branch, they
move the card to the Code Review list. Any reviewers “put their face on it” while
reviewing.

There is no bottleneck for merging into master: everyone can do it.

The cards in the Testing on Staging (or Testing on Ad Hoc build for iPhone apps)
list are deployed to staging (or distributed via HockeyApp for iPhone apps). The
card creator and a designer review it for accuracy and user experience.

There is no bottleneck for deploying to staging: everyone can do it.

https://github.com/thoughtbot/guides/tree/master/protocol

CHAPTER 1. PRODUCTS 18

The cards in the Ready for Production list include cards that have been accepted
on staging and are ready to be deployed (but not necessarily rolled out).

There is no bottleneck for releasing to production: everyone can do it.

The cards in the Live (Week of [date]) lists have been released. Each week has its
own Live list so we can follow what got released when.

Weekly Meeting

Once a week, usually on Monday, everyone meets in-person or via video confer-
ence. This replaces Monday’s daily standup and is an opportunity for the entire
team to discuss achievements, hurdles, and concerns with the goal of everyone
leaving excited and empowered for the week of work to come.

The advisor runs this meeting.

• Understand how the team feels about last week’s progress and what’s to
come. Ask each team member from both thoughtbot and the client, “How
did you feel about last week? How do you feel coming into this week?”
This is less a recap of the completed work (a better place being during daily
standup) and more a pulse of how each person feels. Take notes.

• Have each member of the team voice any risks or concerns; after everyone
has had the opportunity to bring these up, work together as a group to
mitigate these concerns. Encourage everyone to voice the same concerns
even if they’ve already been mentioned; it helps prioritize what the team
is most concerned about and should spend the most time fixing. This is
an opportunity to discuss how to improve the process and product we’re
building together. Note who had which concerns and track how we’ll be
addressing these concerns.

• Celebrate success. Review the work that shipped last week, showing the
actual product, and congratulate those who made it happen.

• After the retro is done, share the notes with the team and ensure any-
thing actionable from the retro is captured. This allows teammates to view
progress, understand how feelings on the project change over time, and
accomplish anything we set out to do given the outcomes of the retro.

Notes from a retro may look something like this:

CHAPTER 1. PRODUCTS 19

“ Joel

• last week

– felt like it went by extremely fast

* first couple days, thinking through the project, under-
standing

* didn’t feel like we got much implemented in code
* feel great about knowing what we’re building

• this week

– feeling confident

Ryan

• last week

– fast-paced with understanding, overwhelmed with the
complexity

– towards the end of the week with prototyping and itera-
tion, it helped a lot

• this week

– feel much better than start of last week
– brainstorming + prototype helps a lot

Yadid

• last week

– flew by, felt like it didn’t happen
– progressed a lot
– defining the interaction was really important
– confident moving forward with what we decided upon

• this week

– time is worrying
– user study, potentially risky

Concerns

• timeline - it’s a tight project (JQ, RC, YA)

CHAPTER 1. PRODUCTS 20

• concerned with choice of technology with vanilla Rails (JQ, YA)

– lots of state involved

• concerns around interaction and not specifically the visual de-
sign (RC)

• testing (potentially won’t change outcome) (YA)
• need a staging server (JQ)

– don’t want to connect to real API
– in dev+test we’ve created a fake API that we’re connecting

to
– can’t do that on Heroku

Addressing concerns

• Yadid to set up a staging server for the app to interact with
• Ryan to do a quick run-through with Yadid re: interactions
• Josh to look into Omar rotating on

The stage of the product should guide the planning meeting. For example:

1. Research and Validation: Is a user interface flow validated enough to start
making a minimal working version?

2. Product Availability: Can users accomplish the flow with working, deployed
software?

3. User Engagement: What do numbers look like for that flow?

Tell customer stories. Do people love this product? Show numbers. Aremore peo-
ple using the product this week than last? Are the same people using the product
more this week than last?

In all stages, we should be asking:

• Are we building the right product?
• How much time remains based on the budget?

Based on the answers to these questions, we record our plans in the task man-
agement system:

CHAPTER 1. PRODUCTS 21

• Archive the two-week old “Live (Week of [date])” list.
• Review product design priorities. Pull what we estimate to be an appropri-
ate amount for this week into Next Up.

• Review bugs. Pull any important bugs into Next Up and prioritize them at
the top of the queue before everything else. We want to always be fixing
what’s broken first.

• Review engineering and refactoring tasks. Pull cards into Next Up based on
what the designers and developers believe is appropriate given the previ-
ously stated product design and bug tasks.

• Re-sort the entire Next Up queue according to priority. Cards that were at
the top of the list last week may be moved to the bottom or back to other
boards or lists.

The task management system is the canonical repository for plans.

When things are only said on the phone, in person, in emails that don’t include the
whole group, or in one-on-one chats, information gets lost, forgotten, or misinter-
preted. The problems expand when someone joins or leaves the project.

During this meeting, seek discussion with, not instruction from, clients. We can’t
talk about solutions until we identify the underlying problems.

We’ve been called “aggressive” with our approach cutting features, budgets, and
schedules. We say “no” a lot. It’s hard to say “no.” “No” is usually not well-received.
There’s a reason someone requested the feature.

We have to battle sometimes in the face of “yes”. We do so armed with knowl-
edge of the history of software success and failure: in 2004, only 34% of software
projects were considered successes. The good news is that was 100% better than
the stats in 1994. “The primary reason is the projects have gotten a lot smaller.”

Few software projects fail because they aren’t complicated enough. Saying “no”
means keeping the software we’re building as simple as possible. Every line of
code we write is an asset and a liability.

Simple software, once launched, is better suited to meeting the demands of cus-
tomers. Complex software, if it ever even launches, is not as able to respond to
customer demands quickly.

http://www.codinghorror.com/blog/2006/05/the-long-dismal-history-of-software-project-failure.html

CHAPTER 1. PRODUCTS 22

On-site Customer

Tools like Slack, GitHub, and Trello have made remote work much easier over the
years, and we work remotely every day within thoughtbot across offices.

Remote consulting work is possible, but raises the degree of difficulty. One of the
few requirements of Extreme Programming is that the customer is always avail-
able.

Ideally, thatmeans face-to-face, on-site. We’ve set up our offices so that our clients
work at the same cluster of desks as our teams. Nothing beats in-person commu-
nication.

An ideal consulting project for us is one where a member of the client team is will-
ing to work at our office Monday-Thursday for the duration of the project. Failing
that, we want to find out during the sales process how available they will be on
Slack, GitHub, and Trello.

If it seems like they won’t be available very often, we should seriously consider
declining the project.

Remote Work

Remote work is when the client and the team are in different locations, either the
team is in another thoughtbot office from the client or team members work from
a different location for the duration of the project.

Meet in person

At the beginning of a remote engagement, when possible, everyone should meet
in person for at least one work week. This is useful in order to get to know the
team members better and to develop relationships, which will make it easier to
communicate through asynchronous channels in the future.

If possible, it is beneficial to meet in person again throughout the project.

http://www.extremeprogramming.org/rules/customer.html
http://www.extremeprogramming.org/rules/customer.html

CHAPTER 1. PRODUCTS 23

Well-defined roles and workflows

At the beginning of the project define who handles which role, and how to com-
municate amongst the team. For example, decide whether standups will be done
via group chat messages or via voice or video call.

If part of the team is remote, the whole team should work as if it were remote. We
should over-communicate. Major decisions regarding the project must be docu-
mented online in a medium everyone is aware of and able to contribute to. This
means that all project-related communication should be done in asynchronous
channels that we already use, such as GitHub, Trello, Basecamp, and Slack. The
only workflow difference using these tools when doing remote work is that we
communicate all important information asynchronously, so that everyone stays
informed.

In person communication during a project usually includes frequent updates on
current work and various social interactions. The chat room should be the space
where we communicate, so that no one feels left out, especially team members
who work remotely.

Team members should also be conscious that asynchronous communication
means that sometimes the other person is not immediately available to respond,
and not expect them to. Furthermore, online communication lacks the non-verbal
visual cues such as voice tone and inflection, facial expressions, and body lan-
guage. We should be more careful in the language that we choose to use. A good
reference is our existing code review guide.

Feeling isolated

When working remotely, especially when alone, it is easy to forget how it feels to
be immersed in team camaraderie. Video conferencing helps alleviate this feeling
as well as occasional visits to the office, or working from a co-working space.

Work hours

Weshould try to have 4-6 hours (with consideration of timedifferences) in thework
day that overlap between locations to allow for synchronous communication.

https://github.com/thoughtbot/guides/tree/master/code-review

CHAPTER 1. PRODUCTS 24

For some people, it is sometimes difficult to disengage from work when working
at home. Also, flexible hours means that sometime one may work non-traditional
hours in the day. We should be conscious to keep to a sustainable pace and take
a break away from work.

Tools

Good tools for remote pair programming are:

• tmate and Vim or Emacs, since they require very little bandwidth and do not
lag. Another channel will be needed for voice/video communication, such
as a Hangout or Skype.

• ScreenHero when you need access to other software like the web browser.

Altering the Process

A single Trello board with a few lists as described above works well for most early-
stage teams and products. As they grow, however, more organizational tools may
be necessary. For example, we might want to first add lists to the “Current” board
such as:

• Bugs
• Product Design
• Engineering

Later on, those lists might be better organized as entire boards themselves. Sepa-
rated as boards, it’s easier to evaluate the relative value of addressing each related
thing. Separate boards also keep the “Current” board clean and the product team
focused on the week at hand.

Each of those boards can be organized as the team sees fit for the stage of the
product and the team’s communication needs.

On the “Bugs” board, we’ve sometimes used labels to describe relative criticality of
the bug. If a bug is labeled Critical, then it is pulled immediately into Next Up on
the “Current” board. If the bug is not critical, it stays in Bugs until the next weekly

https://tmate.io/
https://screenhero.com/
http://community.uservoice.com/blog/trello-google-docs-product-management/

CHAPTER 1. PRODUCTS 25

retrospective. A bug has steps to reproduce the bug and optionally a screenshot
or screencast.

The cards on the “Product Design” board are typically the result of sketching user
flows, usability tests, other user research, or the designer’s feel for visual design
improvements.

The cards on the “Engineering” board are refactorings and other engineering tasks
necessary to reduce bugs or improve the user experience. “Response time” is a
primary user experience goal on every app. If an engineering task is labeled Crit-
ical, then it is pulled immediately to Next Up. If the task is not critical, it stays in
Engineering until the next weekly retrospective.

Designing

This may surprise you, but most of our designers use Vim as their primary text
editor. This isn’t the only characteristic that has become distinctly thoughtbot.

Many of our projects are frequently undergoing rapid change. Without classic Pho-
toshop comps or requirements documents, how do our designers fit into the pro-
cess?

Sketches

Just like during the product design sprint, our designers are often sketching in-
terfaces before implementing them. Also like the sprint, anyone on the team is
encouraged to sketch at any time.

We have many Moleskine squared, soft, pocket-sized notebooks around the of-
fices. Take one. The pocket size encourages the habit of getting ideas onto paper
whenever and wherever they hit us. The pocket size also forces design constraints
and mobile-first thinking.

Wireframes

The designer will then refine the sketches into HTML and CSS wireframes. HTML
and CSS wireframes are built using Bourbon and Neat in the browser so the team

http://www.amazon.com/Moleskine-Squared-Notebook-Cover-Pocket/dp/8883707125
https://github.com/thoughtbot/bourbon
https://github.com/thoughtbot/neat

CHAPTER 1. PRODUCTS 26

Figure 1.8: Moleskines

CHAPTER 1. PRODUCTS 27

can understand the core experience as fast as possible. It also allows developers
to start implementing features within the wireframes.

It is crucial to keep the design of the application ahead of the development. Focus
should be placed on wireframing usability, user experience, and flows.

We find it important to keep the design and development cycle adequately tight.
We do not wireframe one month out because as we approach certain areas of the
product, we often decide to cut or change features.

Those changes are an expected part of the iterative process and feedback loop
between the client, the thoughtbot team, and users. It would be wasteful to spend
time wireframing features that never get built or building features that won’t be
used.

User Interface

“ An interface is a place where two things meet: the human and the
computer. The computer has functions it can perform. The human
needs inputs and outputs to take advantage of those functions. The
interface is the arrangement of inputs and outputs that enable peo-
ple to apply the computer’s functions to create outcomes they want.
- Ryan Singer

In the context of our software, the user interface is the individual views that pro-
vide for goal completion.

We evaluate interfaces on the following criteria:

• Puts outcomes first
• Provides users with affordances
• Congruent with surrounding platform
• Consistent across entire application

We put the users goals first. No one is using our software exclusively because of
how beautiful it is. There’s a reason they sought our solution out. Making that
outcome easily attainable and desirable is our highest priority.

http://feltpresence.com/articles/19-what-ui-really-is-and-how-ux-%20confuses-matters

CHAPTER 1. PRODUCTS 28

We make software easy to comprehend. It’s not enough to be functional, users
must know capabilities exist and be able to anticipate how the software is going
to react to their inputs. Our software should be as intuitive as possible.

We remain consistent with platform guidelines. Interfaces look and feel best when
in congruence with their context, rather than being strictly branded across all plat-
forms. We prefer common patterns when designing.

We retain consistency. Usable interfaces work as expected across the entire ap-
plication.

Interaction Design

Interaction gives users the ability to change the canvas, to directly manipulate.
Designing those interactions is what makes our software come to life. Interactions
should provide affordance — animation, for examples, can be used as a powerful
metaphor for helping a user understand an interface. Interactions help guide a
user from the beginning of a task through it’s completion.

Designers guide these interactions from prototype to implementation. For web
applications we start in the browser. For iOS, we useQuartzComposer. For review,
we use gifs to demonstrate interactions.

Visual Design

We refer to an application’s visual design exclusively as its style. We use the uni-
versal design principles to communicate and bring order to those ideas in our ap-
plications.

Those fundamentals include, among others:

• Alignment (often achieved with grids)
• Emphasis (often achieved with size, position, color)
• Consistency (buttons, links, headers typically look alike)
• Whitespace (elegant, timeless, gives eye a rest)

Successful visual designs typically don’t draw attention to themselves. The content
will be front-and-center. The workflows through the site will be obvious. Resist the

http://medium.com/p/926eb80d64e3
https://developer.apple.com/technologies/mac/graphics-and-animation.html
http://gifbrewery.com/
https://upcase.com/design-for-developers-resources/principles
https://upcase.com/design-for-developers-resources/principles

CHAPTER 1. PRODUCTS 29

temptation to aim for a design that is “memorable” or a design that “pops.”

Successful designs are usable. Consider Google’s visual design:

Figure 1.9: Gmail

Everything’s on a grid. The “Search Mail” and “Compose Mail” buttons are empha-
sized over other calls to action with color. The unread messages are emphasized
over other messages with a bold font weight.

Everything’s on a grid. There is lots of whitespace (especially with AdBlock). Search
interface is consistent with Gmail. Search button is emphasized with color.

Grids. Whitespace. Consistent search box, search filters, search results.

Grids. Whitespace. Emphasis on searching and writing a review.

We say “visual design” instead of “graphic design” because typically graphics aren’t
called for in our applications. Instead, we rely on these principles and excellent
typography, using high-quality typefaces from Typekit and typography.com.

https://chrome.google.com/webstore/detail/adblock/gighmmpiobklfepjocnamgkkbiglidom
https://upcase.com/design-for-developers-resources/typography
http://typekit.com
http://www.typography.com/

CHAPTER 1. PRODUCTS 30

Figure 1.10: Google Search

CHAPTER 1. PRODUCTS 31

Figure 1.11: Google Video

CHAPTER 1. PRODUCTS 32

Figure 1.12: Google Places

CHAPTER 1. PRODUCTS 33

User Interviews & Usability Testing

Running user interviews and usability tests early and often is critical to product
success. We even test sketches to get a feel for flows and mental models. The
earlier the stage, the more we’re testing the problem/solution fit and gathering
research on potential users. The later the stage, the more we’re testing actual
usability of the product.

User interviews and usability tests are the most effective way to test a product via-
bility and usability. By continually testing it verifies that the product and team are
focused on solving people’s real problems and creating a great user experience for
the product. We’ve found that having a testing plan early is the best way to con-
sistently run user interviews and usability tests during the project. A starting point
for the project’s interviews and testing should be biweekly. This sets the expec-
tation that interviews and testing are needed and the team should discuss if that
plan will work for their individual project. Testing should always accommodate the
users and project needs.

“ We’re testing the software, not you.

Usability is the measure of how easy it is for a user to reach an outcome.

We think about usability testing similarly to test-driven development: writing falsi-
fiable outcomes for users. Our outcomes are written in the form of a script that’s
written in the same way as a jobs story.

“ When I arrive at work I want to review the team’s status updates so I
can help any blocked teamates.

Once the script is written, we find testers.

The most representative candidates are going to be sourced from our existing
userbase. Send out a tweet, add a banner to our site, or add a link to our newslet-
ter. Even pre-launched projects have a mailing list to use.

When we have trouble sourcing or aren’t interested in existing users, craigslist can
be effective to find candidates. Our office manager puts a posting on craigslist,
schedules them to come into our office, and pays them $30 for their time after the
test.

http://blog.intercom.io/using-job-stories-design-features-ui-ux/

CHAPTER 1. PRODUCTS 34

We have a simple template for finding people on craigslist.

After the tester has arrived, we introduce ourselves and explain the process.
There’s no need to be strictly formal, we want them to be at ease. To have a
relaxed user test, it’s important to remind the user of a few things:

• “We are looking for your honest feedback.”
• “None of what you’re about to see was made by me. There’s no way you
can hurt my feelings.”

• “We’re testing the software, not you. It’s not user testing, it’s usability test-
ing.”

If we are filming them, we ask them to sign a simple consent form.

Once underway, we ask them to say out loud what they’re thinking as they’re using
the software, which can feel unnatural but is important. While running the session,
the only reasons to speak are to get them to talk out loud again, ask questions, and
provide them with outcomes to achieve.

We should avoid leading questions such as “Was this task difficult for you?” but
should ask follow-up questions. For example, if someone says “That’s awesome!”,
we shouldn’t silently pat ourselves on the back. We should say “Why is it awesome
for you?” We are seeking understanding.

After the session, we look back at our notes to identify the top handful of problems
and fix them before the next round of usability tests. If there’s a problem revealed
with the navigation, there’s a temptation to totally re-do it. We try to resist that
urge and come up with less drastic changes.

Developing

Themajority of our development practices were first detailed in Kent Beck’s classic
Extreme Programming Explained: Embrace Change and in Gerald Weinberg’s The
Psychology of Computer Programming. We’ve tried its practices and found that
using most of the practices most of the time improves the quality of our work and
happiness of our team.

https://gist.github.com/croaky/1a1ff3902b4321984b0b
https://gist.github.com/croaky/bf97025689b019293f78
http://www.amazon.com/Extreme-Programming-Explained-Embrace-Edition-ebook/dp/B000OZ0N5S/ref=tmm_kin_title_0
http://www.amazon.com/The-Psychology-Computer-Programming-Anniversary/dp/0932633420
http://www.amazon.com/The-Psychology-Computer-Programming-Anniversary/dp/0932633420

CHAPTER 1. PRODUCTS 35

Version Control

Wealways use source code control. It’s like a timemachine. We canwork in parallel
universes of our source code, experimenting without fear of losing work, rolling
back if something goes wrong.

Git is an open source source code control system written by Linus Torvalds. It’s
fast and great for working in branches.

We use GitHub for hosting our git repositories.

Style Guide

Wewrite code in a consistent style that emphasizes cleanliness and team commu-
nication.

High level guidelines:

• Be consistent.
• Don’t rewrite existing code to follow this guide.
• Don’t violate a guideline without a good reason.
• A reason is good when you can convince a teammate.

Pair Programming

Code that is written by two peoplewho sit next to each other at the same computer
is pair-programmed code. That code is considered high quality and should result
in cost savings due to less maintenance.

In the long run, this style of development saves money because fewer bugs are
written and therefore do not need to be fixed later.

An indication that pairing is beneficial and should be done more often is the fol-
lowing example:

“ When you are writing an important piece of code, don’t you want
another person to look it over before it goes into production?

http://git-scm.com
http://github.com
https://github.com/thoughtbot/guides/tree/master/style
http://www.extremeprogramming.org/rules/pair.html

CHAPTER 1. PRODUCTS 36

While we don’t pair program 100% of the time, we recognize the difficulty in acting
as a teamwhen we work at a distance from each other. There is no better collabo-
ration between designers, developers, or between designers and developers than
at the keyboard.

Test-Driven Development

Test-Driven Development (TDD) is perhaps the most important Extreme Program-
ming (XP) rule that we practice.

Business benefits of TDD:

• Deliver more value, faster
• Always ship working software
• Adapt to change quickly

Code benefits of TDD:

• Readable specs and code
• Clean public interfaces
• Decoupled modules

Process benefits of TDD:

• Regression safety net
• Fearless refactoring
• Team trust

At a high level, how to test is very simple:

• Write test first.
• Red-Green-Refactor cycle.

For more specifics, we recommend our Test-Driven Rails workshop, which we run
about once a month. It goes into incredible detail about the TDD workflow specif-
ically for Ruby on Rails developers.

http://www.extremeprogramming.org/rules/testfirst.html
https://upcase.com/test-driven-rails

CHAPTER 1. PRODUCTS 37

Acceptance Tests

Acceptance tests are code created from jobs stories. They look like this. This code
is run against the application. When executed for the first time, the test will fail.
The developer writes application code until the test passes.

When the test passes, the developer commits the code into version control with a
message such as:

“ Guest creates pledge

The code is then run on the Continuous Integration server to make sure the ac-
ceptance test still passes in an environment that matches the production environ-
ment.

Meanwhile, the code is pushed to the staging environment and the developer and
customer representative smoke test it in the browser.

When the acceptance test is green for the CI server and you and any other design-
ers, developers, or clients are satisfied that the jobs story is complete on staging,
the feature can be deployed to production at will. This can result in features being
pushed to production very frequently, and thereforemore value is being delivered
to customers sooner.

Refactoring

The third step of the “red, green, refactor” step is refactoring, the process of im-
proving the design of existing code without altering its external behavior. It’s a
critical step in the process, but often overlooked. We’re so passionate about refac-
toring, we wrote an entire book on it, Ruby Science.

Code Reviews

Here’s the flow. Read our git protocol for the git commands.

1. Create a local feature branch based off master.
2. When feature is complete and tests pass, stage the changes.

https://gist.github.com/croaky/d8699363382d86c10c54
https://upcase.com/ruby-science
https://github.com/thoughtbot/guides/tree/master/protocol

CHAPTER 1. PRODUCTS 38

3. When you’ve staged the changes, commit them.
4. Write a good commit message.
5. Share your branch.
6. Submit a GitHub pull request.
7. Ask for a code review in Slack.
8. A teammember other than the author reviews the pull request. They follow

Code Review guidelines to avoid miscommunication.
9. They make comments and ask questions directly on lines of code in the

GitHub web interface or in Slack.
10. When satisfied, they comment on the pull request “Ready to merge.”
11. Rebase interactively. Squash commits like “Fix whitespace” into one or a

small number of valuable commit(s). Edit commitmessages to reveal intent.
12. View a list of new commits. View changed files. Merge branch into master.
13. Delete your remote feature branch.
14. Delete your local feature branch.

Test-Driven Development moves code failure earlier in the development process.
It’s better to have a failing test on your development machine than in production.
It also allows you to have tighter feedback cycles.

Code reviews that happen right before code goes into master offer similar bene-
fits:

• The whole team learns about new code as it is written.
• Mistakes are caught earlier.
• Coding standards are more likely to be established, discussed, and
followed.

• Feedback from this style of code review is far more likely to be applied.
• No one forgets context (“Why did we write this?”) since it’s fresh in the au-
thor’s mind.

Continuous Integration

Martin Fowler has an extensive description of Continuous Integration. The basics
are:

http://robots.thoughtbot.com/5-useful-tips-for-a-better-commit-message
https://help.github.com/articles/using-pull-requests/
https://slack.com/
https://github.com/thoughtbot/guides/blob/master/code-review
http://martinfowler.com/articles/continuousIntegration.html

CHAPTER 1. PRODUCTS 39

• We have a test suite that each developer runs on their own machine.
• When they commit their code to a shared version control repository, the
tests are run again, “integrated” with code from other developers.

This helps ensure there’s nothing specific to the developer’s machine making the
tests pass. The code in version control needs to run cleanly in production later so
before the code is allowed to be deployed to production, it is run on a CI server or
service.

When a build fails, we get alerts in Slack and via email. Click the alert and we see
a backtrace that gives us a hint of how to “fix the build.”

When we write the fix and commit to version control again, we’ll get a “passing
build” alert in Slack and via email. Click the alert and we see the passing build.

Green is good.

A solid test suite is an absolute requirement for a web application in our opinion.
However, onemajor problemwith test suites is that they get slow as they get large.

CI can ease the pain by distributing the test runs in parallel. We’ve had 45 minute
test suites cut down to 2 minutes using this technique.

We’ve used CruiseControl, Integrity, Hudson (now called Jenkins), and other CI li-
braries that we manage ourselves. This resulted in many hours of expensive at-
tention.

We use Travis CI Free for open source projects. We use Travis CI Pro for private
repositories because of its consistent UI, simple configuration and its close inte-
gration with GitHub.

CI test runs are triggered by GitHub post-receive hooks. The hooks we have on
most of our GitHub repos are:

• Travis for Continuous Integration
• Code Climate for code quality and security checks
• Hound for style guide enforcement
• Slack for chat room notifications

http://travis-ci.org
https://www.travis-ci.com/
https://help.github.com/articles/post-receive-hooks
https://codeclimate.com
https://houndci.com/

CHAPTER 1. PRODUCTS 40

Production

We live in a magical modern era where many problems have already been solved
for us. We focus on the core product as much as possible and outsource opera-
tions as much as possible to external services.

This saves time and money. We can get started using those services in minutes,
and pay a service tens or hundreds of dollars per month instead of paying devel-
opers thousands or tens of thousands.

We often create a Google spreadsheet for our clients, listing the monthly cost,
description, and credentials of each of the products’ external services. It includes
line items like GitHub, Heroku, SendGrid, New Relic, and Airbrake.

Checklist

We have found that a short checklist is valuable when setting up a new production
environment or preparing for a launch:

• Are we on the latest Heroku stack?
• Are we using a concurrent web server? See how to deploy with Puma.
• Are long-running processes such as email delivery being run in background
jobs? See how to set up Delayed Job.

• Are there redundant (at least two) web and background processes running?
• Are we using SSL? See “SSL Certificates” section below.
• Are API requests being made via a separate subdomain (api.example.com)?
Even if the same app, this gives us architectural flexibility in the future.

• Is the latest Ruby defined in the Gemfile? See how to set it up.
• Is config stored in environment variables?
• Are deploys done manually at a scheduled time when teammates are fresh
and available if something goes wrong?

• Do deploys follow a well-documented script?
• Are we sending logs to a remote logging service? See “Log Collection” sec-
tion below.

• Are we using a Heroku “Standard” database or higher? See Heroku produc-
tion databases.

https://devcenter.heroku.com/articles/stack
https://devcenter.heroku.com/articles/deploying-rails-applications-with-the-puma-web-server
https://devcenter.heroku.com/articles/production-check#production-tier-database
https://www.ruby-lang.org/en/downloads/
http://bundler.io/v1.11/gemfile_ruby.html
http://12factor.net/config
https://github.com/thoughtbot/guides/tree/master/protocol/rails#deploy
https://devcenter.heroku.com/articles/production-check#production-tier-database
https://devcenter.heroku.com/articles/production-check#production-tier-database

CHAPTER 1. PRODUCTS 41

• Are we backing up our production database? See Heroku PGBackups.
• Are we monitoring performance and uptime? See “Performance Monitor-
ing” section below. See New Relic.

• Are we tracking errors? See “Error Tracking” section below.

Domain Names

Use Domainr to see what’s available.

Use DNSimple to buy and maintain domain names. If you already have a do-
main registered elsewhere, like GoDaddy, DNSimple provides a transfer service
that makes it easy to switch.

We like it for its simplicity. It also has templates we most often need:

• Heroku
• Google Apps
• Tumblr

Follow the Custom Domains tutorial to set up root and subdomains on Heroku.

SSL Certificates

Buy a wildcard certificate from DNSimple. The wildcard (*) lets you use the same
certificate on www., staging., api., and any other future subdomains.

Follow these steps for adding a DNSimple SSL certificate to Heroku.

SSL and DNS are tightly coupled. If we’re doing any work with SSL, we need to
make sure we have access to make DNS changes, like adding a CNAME record.
If we’re working with a client who has a department that handles DNS, schedule
time during off-peak hours to pair program with the DNS person to make sure
everything goes well. We can accidentally take down a site that is all SSL if this
work isn’t done methodically.

https://devcenter.heroku.com/articles/heroku-postgres-backups
https://newrelic.com/
http://domai.nr
http://dnsimple.com
https://devcenter.heroku.com/articles/custom-domains
https://dnsimple.com/ssl-certificate
https://gist.github.com/croaky/e0beb6025d58eeb88db5

CHAPTER 1. PRODUCTS 42

Hosting

We use Heroku. It’s a platform built on Amazon’s cloud infrastructure. It is simple
to use when our app is just a toy and is built to scale up for high concurrency or
high sustained load.

Like Rails, Heroku uses conventions tomake decisions for us that are unnecessary
for us tomake. Some things likeweb servers and app servers are solved problems.
They act as our outsourced operations team. The amount of time we can focus on
the product instead of solved problems is worth the premium over bare-bones
Amazon Web Services.

The cloud promises lower operating costs, especially at the beginning when ca-
pacity can be lower. Forget about sunk costs of expensive servers.

The cloud and the services it enables will empower our clients’ businesses to start
and operate in a manner that has never been possible before without significant
upfront investment.

If we offer file uploads for features like user avatars, we upload them to Amazon
S3.

We also serve our images, CSS, and JavaScript assets from a CDN such as Fastly.

Performance Monitoring

We use NewRelic (Free-$100s/month) to monitor performance of production ap-
plications.

Debugging performance might be the best part of a developer’s job. There’s a
clear, numeric problem. When we fix it, that number improves. We can say things
like “We made this 175% better.”

There’s many established techniques for fixing performance problems. A number
of them come “for free” with Rails + Heroku:

• Amazon server clusters
• gzipping
• Asset pipeline
• SQL query caching

http://heroku.com
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://www.fastly.com/
http://www.newrelic.com
http://guides.rubyonrails.org/asset_pipeline.html
http://guides.rubyonrails.org/caching_with_rails.html#sql-caching

CHAPTER 1. PRODUCTS 43

A number of them require developer thought:

• Database indexing
• Eager loading
• HTTP caching

Page caching is the heaviest handed technique we have, but if we can cache an
entire page and push it into a CDN, that will be the fastest option.

Log Collection

Most applications write useful debugging information to logs. On Heroku, these
go to standard output by default and are eventually discarded.

We typically use Logentries to accept logs from Heroku and other sources. Once
sent to Logentries, you can search previous logs and set up alerts for errors outside
the Rails stack, such as out of memory errors.

If we’re adding Logentries to a client project, the best solution is to have the client
set up their own Logentries account and add the relevant thoughtbot members.
If the client doesn’t want to set it up or there’s too much red tape, we can create
a new project on the thoughtbot Logentries account and then delete it once our
engagement has ended.

We don’t use theHeroku Logentries addon, as it will automatically create a number
of alerts and send them to every admin on our Heroku organization.

To set up Logentries for a Heroku application, follow the instructions for setting
up a syslog drain.

Error Tracking

We use Airbrake Bug Tracker (Free-$25/month).

Transactional Email

Weuse SendGrid (Free-$400/month) to have our application deliver email to users,
known as transactional email.

https://logentries.com
https://logentries.com/doc/heroku/#syslog_drain
https://logentries.com/doc/heroku/#syslog_drain
http://airbrake.io
http://sendgrid.com
http://www.foundrygroup.com/wp/2010/04/foundry-group-invests-in-sendgrid/

CHAPTER 1. PRODUCTS 44

Examples of transactional email are:

• Confirmations
• Follow ups after the first 3 days of use
• Free trial is expiring
• Message another user in the system

We use SendGrid directly, not via the Heroku add-on, in order to avoid being
lumped under the same IP group as others on Heroku (who might be misbehav-
ing).

Payment Processing

For collecting payments from users via credit or debit card, we use Stripe. It is a
payment gateway and merchant account. We also use it for recurring billing.

Charges for Stripe will vary depending on usage. Successful charges are 2.9% + 30
cents. There are no setup fees, monthly fees, or card storage fees.

For sending money to users’ bank accounts via ACH, we use Balanced.

Measuring

“ “If you can not measure it, you can not improve it.” – Lord Kelvin

The difficult part of measuring is deciding what to track.

Dave McClure’s AARRR framework provides a high-level overview of important
metrics. We then use tactics such as event tracking to instrument those metrics.

AARRR

The AARRR framework is:

• Acquisition

http://stripe.com/
https://www.balancedpayments.com/
http://www.slideshare.net/dmc500hats/startup-metrics-for-pirates-nov-2012

CHAPTER 1. PRODUCTS 45

• Activation
• Retention
• Revenue
• Referral

For an early stage product, we work to improve them in this order:

1. Activation: visitor finds the product desirable enough to try, is able to use it
and get to aha moment in shortest time possible

2. Retention: user regularly uses product, it is doing the job they hired it for,
customer is happy

3. Revenue: user pays for product
4. Acquisition: we knowwhere our users come from, are able to try new chan-

nels, run tests, and kill or double-down on different channels
5. Referral: users refer other users, the ideal acquisition channel

Instrumentation

In order to analyze metrics later, we need to instrument our app to log the right
metrics. The primary type of instrumentation we care about is called “event track-
ing.”

Use Segment to capture events whenever possible. It is analogous to the adapter
pattern for analytics services.

Segment provides on JavaScript library in our web apps, one library in our server-
side framework, and one SDK in ourmobile apps. This allows us to toggle different
services such as Google Analytics, Amplitude, Intercom, and others.

When Segment does not support a backend service, we can either use the service
directly or contribute to the appropriate Segment open source libraries.

The hardest part of event tracking is choosing the granularity of the events. It’s
costly to reconstruct historical measurements and missed knowledge can kill an
early-stage product. So:

• track events as soon as they exist in the product
• err on the side of more data than less

http://www.growhack.com/2012/12/04/discovering-your-aha-moment/
https://segment.com/
http://sourcemaking.com/design_patterns/adapter
http://sourcemaking.com/design_patterns/adapter
https://segment.com/libraries/analytics.js
http://qr.ae/GBPdx

CHAPTER 1. PRODUCTS 46

Figure 1.13: Segment

CHAPTER 1. PRODUCTS 47

• include as much state as possible per event
• own the data from the start

Some typical events we’ll want to track:

• open app (mobile)
• background app (mobile)
• pageviews (web)
• create account
• make purchase
• add content
• make connection/friend
• upgrade subscription
• refer friend

Use properties on events liberally. Typically include:

• session ID
• all user properties
• environment: operating system, app version, device hardware details,
• current battery, wifi, cellular status
• number of seconds into the session

Business analytics do not need to be realtime and tracking these data should not
slow down the user experience. So, we background these tasks whenever possible
using whatever backgrounding system makes sense for our platform. Examples
include Delayed Job and IronWorker.

Subscription Metrics

We work on a lot of products that have a monthly or yearly subscription business
model. There are some classic metrics we know we want to track for these prod-
ucts, such as:

• Monthly Recurring Revenue (MRR)

http://mcfunley.com/whom-the-gods-would-destroy-they-first-give-real-time-analytics
https://github.com/collectiveidea/delayed_job
http://www.iron.io/worker

CHAPTER 1. PRODUCTS 48

• Active subscriptions
• Lifetime Value (LTV)
• Churn per-plan, monthly and annually

Since we use Stripe for payments, we’ve found Baremetrics is the fastest and eas-
iest way to track these metrics.

If our clients want to raise money from investors, the following numbers are gen-
erally considered investment-ready:

• LTV is 3x-5x greater than Customer Acquisition Cost (CAC)
• 10-30% month-over-month growth in MRR
• 5-7% annual churn

Churn is particularly critical when fundraising. Small changes in churn can drasti-
cally improve valuation.

Calculating CAC is a manual spreadsheet exercise. It requires adding employee
overhead costs and direct marketing costs together, then dividing by the number
of new customers for that month.

For our own product, Upcase, we rely on our bookkeeper, Supporting Strategies
to provide us with those numbers, and make adjustments for which vendors such
as Google (AdWords), Twitter, or AdRoll fall under the direct marketing accounting
class.

A/B Testing

Someone can tell us in a usability test when they’re confused by a page or when
they’re frustrated by upsells during the checkout process. They probably can’t tell
us whether one set of copy or another is more likely to make them feel an affinity
with our landing page, pull out their wallet, and plunk down cash.

So, we A/B test landing pages and payment flows.

We don’t A/B test price. Users talk to each other and it canmake customer support
difficult. We test the price off-line via customer interviews instead.

http://en.wikipedia.org/wiki/Customer_lifetime_value
https://www.baremetrics.io
http://www.forentrepreneurs.com/startup-killer/
http://www.forentrepreneurs.com/startup-killer/
http://sixteenventures.com/saas-churn-rate
http://www.forentrepreneurs.com/why-churn-is-critical-in-saas/
http://www.forentrepreneurs.com/why-churn-is-critical-in-saas/
https://docs.google.com/a/thoughtbot.com/spreadsheet/ccc?key=0AnkUc5wE2xc6dGhHSUpnTy03MDlJd29xc3BzbWg2Unc
https://upcase.com
http://www.supportingstrategies.com/
http://en.wikipedia.org/wiki/A/B_testing

CHAPTER 1. PRODUCTS 49

Feature Flags

Software is soft. It’s always changing. Hopefully, we’re always learning from our
changes.

A cool way to manage changes is via feature flags. Using a tool like Rollout, we
can “flag” certain features as only ready for parts of our user base; i.e. just the
development team, or just the founder’s friends, or 10% of all users, etc.

That way, we can see how users respond to the feature without rolling it out to
everyone. We can pair this technique with A/B testing to compare how users re-
spond to different features.

https://github.com/FetLife/rollout

Our Company

Principles

Principle Zero

We regularly eliminate and simplify policies. Our most important policy is “use
your best judgement”. We call this Principle Zero.

Minimize Hierarchy

We strive for few job titles, few departments, and few hierarchies. We prefer com-
position of roles necessary for projects and company objectives over inheritance
of bosses and direct reports. We are at thoughtbot primarily for our design and
development skill, and want to apply it, rather than creating company overhead.

Transparency

We avoid having private conversations about each other or clients. Instead, we
talk in person, and use tools such as Slack, Basecamp, and GitHub to communicate
openly within a project, within thoughtbot, and publicly.

50

CHAPTER 2. OUR COMPANY 51

Honesty

While we should be cognizant of people’s feelings, and seek to work with each
other constructively, we cannot let those concerns get in the way of our happiness
and the success of our work. We’d rather be too honest than too polite.

Trust

Our standards are very high, and bringing on a new teammember requires a “yes”
from everyone who participated in the interview process. Therefore, we expect
the best from each other, give each other the benefit of the doubt, and encourage
each other to take initiative to improve ourselves and the company.

Continuous Improvement

We recognize that we can always be better. Therefore, we have strong opinions,
loosely held, and take initiative to improve ourselves, the company, and our com-
munity.

Time

We work a sustainable pace. We work four days for clients on consulting and one
day on “investment time.” We typically spend Monday-Thursday on client work
and Friday on investment.

When taking time off during client work, we discuss how it will impact the schedule
with other team members.

Sending off-hours communication may create an unintended sense of urgency
with the recipients of the message, so we try to avoid creating that urgency when
possible.

Unless actually urgent, we may ignore off-hours messages that we receive and
handle them once we’re back at work.

http://www.extremeprogramming.org/rules/overtime.html

CHAPTER 2. OUR COMPANY 52

Consulting

Wemake ourmoney on consulting projects. Those projects start with sales and go
through a normal flow of designing, developing, shipping, monitoring, and iterat-
ing. We want to do such a good job for our clients that they will want to poach us,
and be such a great place to work that we can be confident our teammates won’t
leave.

Investment

Investment time is time for investment in ourselves, our company, and our com-
munity. Primarily this means doing something that interests us like learning a
new programming language, contributing to open source, discussing interesting
things, attending community events, or reading an educational book. The goal is
to encourage individuals to improve and share their knowledge with the rest of
the team.

We organize our investment work on the “Investment Time” Trello board.

Ideas for Fridays and in between client projects:

• Contribute to open source software.
• Write a blog post. Manage it on the “Editorial Calendar” Trello board.
• Pick from or contribute back to dotfiles.
• Explore change to tools and process on the “Research” Trello board
• Work on conference and meetup talks and proposals.
• Volunteer as amentor for Upcase, Metis, Galvanize, Dev Bootcamp, or Rails-
Bridge, or another solid learning organization.

Here are some ideas that are more directly revenue generating:

• Assist with sales.
• Meet someone new or make an existing relationship stronger.
• Contribute to one of our existing books or create a new one.
• Create content for Upcase. Manage it on the “Upcase Content” Trello board.
Pull from any list or add ideas to the “Ideas” list.

https://github.com/thoughtbot/dotfiles
http://upcase.com
http://www.thisismetis.com
http://www.galvanize.com/courses/
http://devbootcamp.com
http://www.railsbridge.org
http://www.railsbridge.org
https://thoughtbot.com/books
http://upcase.com

CHAPTER 2. OUR COMPANY 53

• Answer questions on the Upcase Forum.
• Work on Hound.
• Help with FormKeep
• Assist with an unreleased product.
• Form a team, run a product design sprint, and build on an idea of your own.

There is a difference between our normal Friday investment time, and extended
downtime between client projects.

Extended periods of time between client projects should skew heavily towards
revenue generating activities. This could be networking and sales, working on ex-
isting revenue generating products and services, or creating something new that
will generate revenue.

Because this extended time period will go away when you resume client work, and
because we can’t sustain non-revenue generating activities for long, approach this
extended time between client projects with a sense of urgency.

Validating ideas, shipping, and getting to revenue generation as quickly as possible
should be apriority. We shouldn’t goweekswithout results to show, andwe should
impose the same constraints and process as we do on client projects.

Sales

We’re designers and developers. We want to design and develop software. Before
we can do that, we need clients to hire us. The following section details how our
sales process works and answers commonly asked questions by potential clients.

The overall process is:

• Someone contacts us.
• We have them fill out our new project form.
• We have a phone call or have them come into the office.
• Qualify/disqualify: are we a good fit for the client?
• Qualify/disqualify: is the client a good fit for us?
• Understand the client’s vision.
• Agree to the outcomes we’re trying to achieve.

http://forum.upcase.com
http://houndci.com
http://formkeep.com
http://thoughtbot.com/contact

CHAPTER 2. OUR COMPANY 54

• Estimate iterations.
• Schedule people for iterations.
• Sign the contract.
• Pay us for the first iteration.
• We begin work.

Leads

Our leads often come from referrals from clients and Google searches.

We track each lead on a Trello card in the “Contacted” list on our “Sales” board:

Figure 2.1: Sales Trello board

We manually create cards for personal introductions. Our new project form au-
tomatically creates cards for each submission. Zapier automatically creates cards
for each voicemail we receive into our main phone line.

The Managing Director will get assigned to the card for the incoming lead but any-
one can take responsibility for that lead. The person responsible qualifies or dis-
qualifies the lead, often with a quick intro email or phone call with the potential
client. Before they do that they should add themselves as a member on the Trello
card.

http://www.quora.com/Whos-the-best-web-development-firm-in-Boston
http://trello.com
http://thoughtbot.com/#new-project
http://zapier.com

CHAPTER 2. OUR COMPANY 55

We prefer to pair on sales calls, having at least one designer and one developer
on the call. This enables us to get multiple opinions on how good or bad of a fit
the client and project might be for us, it gives us the ability to answer both design
and development questions to the best of our ability, and it allows us to train and
improve our process during sales calls.

Understanding Product Vision

Our goal is to begin thinking about the client’s product and working as a team to
plan it even before we officially start working together. Some example questions
to ask:

• What’s unique about this product?
• What big benefit does the product provide?
• What pain does the product alleviate?
• Who currently buys this product?
• Who do you want to buy this product?
• What do customers love about your product?

We distribute the sales process throughout the team. Potential clients should be
able to talk to the people they’ll work with. We should be able to handle spikes in
incoming leads that make it unreasonable for a managing director to respond in
a timely fashion.

We use an internal app to manage our schedule and availability. We don’t track
time, but we do plan in week increments.

NDAs

If the client asks us to sign an NDA, we respond with:

“ Are you willing to chat without signing an NDA? We’ve worked with
hundreds of clients. We talk to hundreds of potential clients each
year. It’s inevitable that we hear similar ideas.

CHAPTER 2. OUR COMPANY 56

If the NDA is important to the client, ask them to tell us enough about the busi-
ness to evaluate whether there’s a conflict with our existing or past clients. If we
determine there’s no conflict, the project is a good fit, and the NDA is mutual, we
sign it. If their NDA is not mutual, we use our NDA.

Roles

We offer some combination of designers, Ruby developers, and iOS developers.
An advisor assists the team for a few hours a week. Everyone is T-shaped, deep in
some area of expertise with the ability to collaborate across disciplines.

We are people, not “resources”, and avoid calling each other such because we
understand we are working with each other as people.

The designer is responsible for designing interactions betweenusers and the prod-
uct. They write user interface code.

The developers make it work. They write the code that makes the app “smart.”
They aim to make the product error-free. They monitor performance because
speed is a feature of every application.

Developers keep it running. They make architectural decisions and interact with
modern-day hosting companies like Heroku, whose employees double as our out-
sourced operations team.

The developers also implement. They write and maintain HTML, CSS, JavaScript,
Ruby, SQL, and lots of other code. They set and meet development standards,
keep the Continuous Integration build passing, and review each others’ code.

The advisor adds an impartial perspective. They runweeklymeetings so that there
is consistency inweek-to-week communication. They keep an eye on the high-level
goals of the project, which should be easier for them because they are not in the
weeds of the project day-to-day. They express enthusiasm when the team is in a
groove and help problem-solve when things get off track.

When appropriate, they should work with the client to either reduce or increase
team size to correctly serve the project.

The advisor is not a project manager. The rest of the team does not report to
them. The advisor is also not a technical or design lead. Advisors need not be
Managing Directors or CXOs, but typically are due to flexibility in schedule. Anyone

http://thoughtbot.com/nda
http://en.wikipedia.org/wiki/T-shaped_skills
http://heroku.com
http://www.extremeprogramming.org/rules/integrateoften.html

CHAPTER 2. OUR COMPANY 57

at thoughtbot should be able to advise a project. If the primary salesperson is not
also the advisor, there should be a smooth hand-off from one to the other.

While each person plays a role, a team needs to be a team.

Everyone takes responsibility every day for delivering high quality work, for staying
true to the vision for the product, for communicating their schedule and intentions,
for making hard decisions, for delegating to others when they don’t have the time
or skill to accomplish a task, for keeping teammorale up, and for being consistent.

No Fixed Bids

Some consulting relationships start with a requirements document or RFP (“Re-
quest For Proposal”). The requirements are often extremely detailed.

The probability of this document containing the optimum feature set is extremely
low. The right features are better learned through user interviews, prototyping,
releasing actual software, and getting feedback from real users.

Based on that document, clients expect consultants in the industry to submit an
exact timeframe and bid. This contract style sets the client and consultant work-
ing against each other right from day one. Instead of focusing on designing the
product experience or evaluating what assumptions were wrong, they spend time
negotiating about what was meant in a document written a long time ago or fo-
cusing on arbitrary deadlines. But it’s worse than negotiating; it’s retroactively
discussing something that no one remembers the same way.

As you might have guessed, we don’t do fixed-bid, fixed-feature-set proposals.

Budget

We do need to know clients’ budgets. This is often uncomfortable for them but
their budget helps determines what scope is possible. It saves time. If they don’t
know their budget, we discuss different options.

We talk about breaking product rollout into stages and try to improve the product’s
chances of success at each stage by:

• Focusing on a small subset of features.

https://medium.com/what-i-learned-today/a61ec864c898

CHAPTER 2. OUR COMPANY 58

• Designing a valuable user experience.
• Developing a meaningful relationship with users.
• Budgeting for marketing tactics to tell users about the product.
• Designing interactions into the product for users to bring other users to the
product.

Rate

We price projects at a per person, per week rate. We consult 4 days per week. We
use the same rate for designers and developers. The work required for each week
dictates which skills are needed. The number of people needed determines the
cost and how much gets done.

During the process of explaining our billing, we sometimes tell potential clients
“time andmaterials” is the same as hiring an employee for their annual time except
there’s less risk to them because:

• Our team is experienced. We’ve interviewed more than a thousand candi-
dates in order to find the talented group of people we work with today.

• We’ve worked together on projects before. We have “a way” of doing things.
• Short projects require less money.
• Our time is predictable (4 days/week) and consistent.
• We can quickly rotate in a new team member if someone gets sick, leaves
the company, or is ready to rotate to a new project.

We don’t provide itemized invoices to clients showing individual pieces of work
that were done. Clients always know what is happening via access to the project
management system (Trello), chat room (Slack), version control system (GitHub),
and ongoing communication with our teammates.

Typical Projects

Examples of typical projects for us are:

• “Product design sprint”, 2 people, 1 week

http://robots.thoughtbot.com/the-product-design-sprint

CHAPTER 2. OUR COMPANY 59

• “Zero to Version 1”, 2 people, 4 weeks
• “Fill a gap until an internal team is hired”, 2 people, 3 months
• “Staff augmentation with existing internal team”, 3 people, 6 months
• “Maintenance team”, retainer per month

Onmany occasionswe’ve done projects for clientswhohave a budget enough for a
“Version 1” product. They followed that up with a round of beta invites, time spent
learning in themarket, a round of funding, or a fewmonths of revenue. They come
back for another round of design and development with a more informed sense
of where the product needs to go.

The feature set of a product is not necessarily indicative of the length of time re-
quired to develop it. Sometimes to get to a very simple product, we have to iterate
on it many times. We love working with clients who understand that a great prod-
uct takes as long as it takes.

In return, we understand that we can never abuse a client’s trust in us. We should
be maximizing our productivity in order to provide them the most value for our
time. Things like our “Research” Trello board, “Code” internal chat room, and
shared dotfiles ensure we have a highest common denominator set of tools and
techniques ready when the situation arises again.

Contract

We store contracts in Dropbox and have a series of folders for pending, current,
past, and lost clients.

The consulting proposal and contract contains:

• A one-page summary of the expected work.
• Our weekly rate.
• Net 15 payment terms.
• Payment for the first two weeks is required to start working.
• After the first twoweeks, invoiceswill go out once aweek on Saturdaymorn-
ings for the prior week’s work.

• Agreement that the client owns the week’s source code once they’ve paid
their weekly invoice.

http://www.thoughtbot.com/maintenance
http://github.com/thoughtbot/dotfiles
http://en.wikipedia.org/wiki/Net_15

CHAPTER 2. OUR COMPANY 60

• Agreement that both parties won’t use materials which break someone
else’s copyright.

• Agreement that both parties won’t publish things to the web hosting
provider which are abusive or unethical.

• Agreement that the contract is mutually “at-will” and either side can decide
to stop work at the end of a week.

• A page for signatures.

Invoices

We use Harvest to invoice our clients at the end of each week.

It sends recurring invoices so we don’t forget to bill people at the end of the week.
It automatically sends late payment notifications, limiting awkward conversations
about the bill.

Clients can pay their invoice via check or wire transfer.

We track who at thoughtbot should receive a commission in the project notes field
of the project’s profile in Harvest. We often split the 5% commission among two
or three people who were involved in the sales process.

Hiring

We are not the permanent team solution for our clients. They often want to know:

• How do I find a technical co-founder?
• How can I learn to “do it myself”?
• How do I hire designers and developers?

We tell them:

• To find a technical co-founder, network in person at user groups and online
at LinkedIn and AngelList. Is what you really need a designer founder?

• To learn to do what we do, sit next to us in our office for weeks at a time,
pair programming and sketching together.

• To hire someone, follow the same process we use, detailed below.

https://www.getharvest.com/
http://www.designstaff.org/articles/does-your-startup-need-a-design-co-founder-2012-01-12.html

CHAPTER 2. OUR COMPANY 61

Recruiting

We’ve met our future teammates via:

• GitHub
• User groups
• Dev Bootcamp
• Authentic Jobs
• Stack Overflow Careers

We met Josh because he submitted excellent patches to Clearance. He was in
Michigan at the time. Due in part to their open source work, we’ve hired great
people as far away as India and Thailand. We moved them to the cities where we
have offices.

Many of us are regulars at Ruby, JavaScript, Vim, and Redis user groups. We met
Ben, Joel, and Mason at the Boston Ruby Group.

A nice thing about those meetings are that they happen naturally. We’re not
trolling GitHub looking for people or fishing for talent at user groups and con-
ferences. We’re there, anyway. If we never hired again, we’d still be writing and
using open source. We’d be members of mailing lists and going to events.

We knowwhatwe’ll get whenwe hire in the aboveways. We know their personality
and energy level from the user group. We know their coding style from their open
source work. We know they’ll take initiative because they voluntarily contributed
to the community.

We met Jessie and Laila via Dev Bootcamp. They went through apprentice.io, as
did Adarsh, Draper, Edwin, Diana, Melissa, Joël, Lisa, Lydia, Rich, Christian, and
Tony.

We’ve also had great luck finding designers on Authentic Jobs and iOS developers
on Stack Overflow Careers.

Interviewing

We track each candidate’s progress through the interview process on a Trello card
on our “Hiring” board:

http://github.com
http://devbootcamp.com
http://www.authenticjobs.com
http://careers.stackoverflow.com
http://github.com/thoughtbot/clearance
http://apprentice.io
http://trello.com

CHAPTER 2. OUR COMPANY 62

Figure 2.2: Hiring Trello board

We manually create cards for personal introductions. Our new teammate form
automatically creates cards for each submission.

Our CEO, Chad, leads the hiring process. He ensures that everyone gets a response
and he speaks with everyone before they are hired.

Anyone can do an initial review of the candidate’s application. In particular, they
review the candidate’s code sample or portfolio. If necessary, they may ask some-
one else (like a designer or iOS developer) for another pair of eyes on the code or
portfolio.

We either send them a rejection or an email based on this template, moving the
Trello card to “Non-Technical Interview”.

Chad will pull the managing director, designers, or developers into subsequent
discussions, putting their faces on the Trello cards to ensure we always know who
is responsible.

We have standard questions for iOS developers, Rails developers, and designers
for the technical interview. We don’t use puzzles or code challenges. Instead, we
prefer reviewing actual work the candidate has done, and talking to them about
design process, architecting systems, and writing code; the same thing we do for
work every day.

The final step for candidates is to visit us for a day. We pay for their flights and

https://gist.github.com/croaky/3e12ff226d6b04451fe8

CHAPTER 2. OUR COMPANY 63

three nights of hotels (rest up Thursday night, work with us on Friday, enjoy Friday
night, explore the city Saturday, fly home Sunday).

On that day, developers pair program with one of our developers in the morning
and another in the afternoon.

Designers pair in themorning andwork on a small product design project through-
out the day and then present at 4pm. It primarily involves sketching and working
with one or two thoughtbot designers.

We do the interviews this way because there’s no substitute for seeing someone
actually do the work and interacting with the team. We also want candidates to
experience what the company is like for themselves.

Aside from technical skill, during the entire interview process, we look for char-
acter strengths like enthusiasm (invigorates others), focus (pays attention, resists
distractions, remembers directions), composure (remains calm when critiqued,
doesn’t interrupt), gratitude (shows appreciation), curiosity (eager to explore,
asks questions to understand, actively listens), optimism (gets over frustrations
quickly), grit (finishes what he or she starts, doesn’t get blocked), emotional
intelligence (demonstrates respect for others’ feelings, knows when and how to
include others), humor (likes to laugh, makes others smile), and appreciation of
beauty (notices and appreciates beauty and excellence).

To be hired, the candidate must get a unanimous “yes” from the existing team-
mates with whom they interacted.

Offer and Onboarding

We use RightSignature ($14-$49/month) to send the offer and get them signed
without the “print and scan” process on either end.

Offers are reviewed and approved by at least onemember of the C-level executive
team before being sent. C-level executives and Managing Directors can execute
offers on behalf of thoughtbot.

When the offer is accepted, we run a custom onboarding script which we wrote. It
creates the teammate’s email address, gives them access to systems like GitHub
and Slack, sends them their Employment Agreement, notifies Accounting, sends a
welcome email to the teammate, and creates a todo list for the hiring manager for
any remaining manual items that we haven’t been able to automate.

http://www.extremeprogramming.org/rules/pair.html
http://www.kipp.org/our-approach/strengths-and-behaviors
http://www.kipp.org/our-approach/strengths-and-behaviors
https://rightsignature.com

CHAPTER 2. OUR COMPANY 64

We assign a pair to new teammembers who acts as a guide on their first day. The
pair helps them set up their machine, purchase any required software, and walk
them through one turn of the development cycle by getting their profile added to
our website. The pair also makes them feel comfortable, answers questions they
may have, or points them to the person who can answer their questions.

Compensation

We are entirely bootstrapped, with no outside investors, and no debt. We are paid
for consulting only four days each week.

Sustainability of the company is very important to us. We want to bring great
people on at reasonable salaries and reward them as aggressively as possible for
actual performance.

We may never be able to compete dollar for dollar with other tech companies but
we can compete on being a great place to work, with lots of opportunities to learn,
and the freedom to define and execute on our own projects.

In addition to salary, everyone receives commission on any new work they help
bring to the company, and quarterly profit sharing bonuses.

Salary increases are the natural result of improvement, and occur company-wide
on a yearly basis. Ourmanagermay increase our salary in a way that is compatible
with the company’s finances and individually appropriate to us based on things
we’ve done, such as:

• creating great software
• making users, teammates, and clients happy
• improving ourselves by learning something new
• improving thoughtbot by bringing in sales, mentoring a teammate, con-
tributing to an internal tool or research

• improving our community by writing blog posts, contributing to open
source, or attending conferences

• doing the things we didn’t think to put on this list

Our salary increasemay also include adjustments based onmarket conditions and
cost of living increases.

CHAPTER 2. OUR COMPANY 65

It’s important that our manager explains why a raise is being given and what, if
anything, could be done to receive a higher raise next time. We don’t get raises
for “just showing up.”

Quarterly Reviews

In order to continually improve ourselves and the company, all year roundonevery
project we’re on, we receive regular feedback from clients, managers, and team-
mates. We additionally have formal quarterly reviews.

During onboarding, a “Quarterly Review” calendar event is created, set to recur
once every 3 months, starting from the hire date.

Ahead of the quarterly review, our manager collects anonymous feedback from
everyone we’ve worked with in the quarter, and everyone in our office. The team
feedback is shared with us before the review.

The agenda for quarterly reviews is roughly:

• Review the feedback from team members
• Our performance on recent consulting projects
• Our investment time contributions
• Our satisfaction with our work, projects, and the company
• Our questions about thoughtbot and our strategy
• Our areas of focus for the next quarter

The results of the quarterly review are recorded and influence future compensa-
tion increases.

Operations

Running a software-based business requires more than beautiful code or a pop-
ular product. Managing cash flow and taxes can feel unimportant or difficult, but
getting them right is as vital to our success as product design.

Fortunately, many services exist whichmake things like bookkeeping, receipts, sig-
natures, and invoicing much easier.

CHAPTER 2. OUR COMPANY 66

Some principles have helped us streamline our operations:

• Outsource things which are super important but we are not excellent at.
• Spend time selecting a vendor and occasionally spend time reevaluating
other vendors.

• Automate repetitive tasks.
• Give everyone “admin” access to as much as possible to avoid bottlenecks.
• Try to avoid building internal tools. It requires time andmoney to build and
makes us reliant on ourselves when things don’t work.

• Our problems are not unique. We will try manual processes first. When we
do build something, it is usually after using other things for years.

Expenses

Every full-time employee gets an American Express corporate card for business ex-
penses. We’ve hired trustworthy people. Use your best judgement on how much
to spend and what is a business expense. It saves time and treats people like
adults.

We buy things. The IRS appreciates it when we track those purchases. So do we,
in order to know whether we’re profitable.

In the US, we use Tallie to send all receipts (meals, travel, books, computers) to our
accountant. In Stockholm, we use Shoeboxed. - Instructions on How to Use Tallie.
- There are also handy iPhone and Android Shoeboxed apps which take photos of
receipts and send them on their way.

Email

We use Gmail for our email.

Calendar

We use Google Calendar for our calendars.

https://usetallie.com/sso
http://www.shoeboxed.com
https://github.com/thoughtbot/handbook/blob/master/purchasing/expenses-us.md
http://shoeboxed.com/iphone
http://shoeboxed.com/android
http://mail.thoughtbot.com
http://calendar.thoughtbot.com

CHAPTER 2. OUR COMPANY 67

Documents

We use Google Docs for our editable documents.

We prefer Google Docs because they are:

• Easily sharable byURL. Everyone has a browser, not everyone hasMS-Office
or OpenOffice installed.

• Always up to date with the latest edits.
• Enable real-time collaboration, like group meeting notes.
• Autosaved to the cloud, so no worrying about backup.
• Are as easy to find as Googling something.
• Without document type versioning (e.g. xls vs. xlsx).
• Cheap.

These tools are not well-suited for large documents or complicated spreadsheets,
which is great.

We write code and are biased toward minimal documentation and upfront specs
so we shouldn’t be writing long documents.

For cases where we are writing large spreadsheets, we find it’s faster to snap to-
gether a small app to do the job. This is a good time to ask if such complicated
analysis is really necessary.

When documents are mostly similar with slight variations (like contracts), we cre-
ate templates using Pages and export to PDF for external use.

Meetings

Weover-communicate with clients in-person and online to avoid having scheduled
meetings. Every problem arises from poor communication.

When we need to meet for a discussion, we aim for 30 minutes spent in-person.

When working remotely, Google Hangouts are indispensable as the “next best
thing”. They are easy to set up, sharable by URL, and let us get a look at whoever
we’re talking to.

http://docs.thoughtbot.com
http://www.apple.com/iwork/pages/
http://www.google.com/+/learnmore/hangouts/

CHAPTER 2. OUR COMPANY 68

Screen-sharing is also very easy, when necessary. We have used Hangouts for
client meetings, candidate interviews, and company meetings.

We use conference lines that are part of our VoIP system, provided by OnSip, for
voice conferencing.

Accounting

Supporting Strategies provides us with an outsourced bookkeeper, controller, and
tax accountant/CPA. They provide us with a hosted QuickBooks install that we can
access via Remote Desktop.

We use Earth Class Mail to receive all paper mail for our offices. This service auto-
matically opens and scans all paper mail and sends it as a PDF email attachment,
which we file in Dropbox. Earth Class Mail also automatically detects checks and
deposits them into our bank account.

We interact with themmostly through email. It’s very efficient and we pay for what
we use, which is great for scaling.

Our accountants review Harvest for new invoices and new payments on a daily ba-
sis and input them into QuickBooks. If any checks or wire transfers have come in,
they are entered into Harvest and QuickBooks. Harvest sends payment received
email notifications to both clients and the management team.

All our receipts go to them automatically.

Our CPA is excellent and provides these services for us:

• Making sure payroll happens regularly and correctly.
• Gathering our accounts payable and making sure we pay partners
promptly.

• Preparingmonthly P&L statements, broken down by services and products.
• Preparing our taxes.
• Making sure cash flow, checking account, savings account are in order.

In Sweden we are assisted by Radius for company, accounting, tax, and human
resources.

http://www.onsip.com
http://www.supportingstrategies.com/
https://www.earthclassmail.com
http://www.radiusworldwide.com/

CHAPTER 2. OUR COMPANY 69

Legal

Our law firm is Gesmer Updegrove LLP. They are able to provide us with legal sup-
port for most everything we need, which is most commonly client, real estate, and
company/stock matters. We also engage Costa & Riccio LLP for US immigration
matters.

In Sweden we are assisted by Newcomers for immigration and relocationmatters.

Sharing

We’ve learned a ton from blog posts, tweets, and newsletters from others in the
community. We try to always give back.

Blog

Our blog is called GIANT ROBOTS SMASHING INTO OTHER GIANT ROBOTS.

We track and coordinate our blog post authoring on an Editorial Calendar Trello
board:

When someone wants to write a post, they write its headline as a Trello card in the
“Next Up” list of the board, and assign the Trello card to themself.

Spend time writing and re-writing a great headline. It helps narrow focus, figure
out the purpose of the post, and grab people’s attention in the first place.

When we begin writing, we move the Trello card to the “Drafts” list.

We write posts in Markdown, and store them in our blog’s GitHub repo. We add
tags to the post, which help our readers find related blog posts.

When we’re ready for feedback from the team, wemove the card to an “In Review”
list and share the Trello card’s URLwith the team in Slack. Wemake changes based
on their feedback and our judgement.

When the post is ready to publish, we give it a publication date, merge, and deploy.

Our RSS feed, Zapier, Buffer accounts are set up to automatically work together to
link to the post from Twitter, Facebook, Google+, and LinkedIn.

http://www.gesmer.com/home.php
http://www.rcosta.com
http://www.newcomers.se
http://robots.thoughtbot.com
http://www.copyblogger.com/magnetic-headlines/

CHAPTER 2. OUR COMPANY 70

Figure 2.3: Editorial Calendar Trello board

We also link to the post from Hacker News, Reddit, Delicious, Pinboard, or other
appropriate sites.

Finally, we move the Trello card to the “Live” column.

Twitter

Everyone on the team has access to our thoughtbot Twitter account and can tweet
at any time. If the tweet is not time-sensitive, we use Buffer to queue up tweets
and keep a schedule.

We try to be conversational, casual, and real on our Twitter account. We talk the
same way as we would in person among ourselves and be good-humored. Puns
are encouraged. Weaim to keep the quality high and for every tweet to be ahit. We
want to avoid spelling mistakes, and use proper punctuation. We should respect
the people who follow us.

To reach the largest audience, don’t begin a tweet with a Twitter username.

http://twitter.com/thoughtbot
https://buffer.com/

CHAPTER 2. OUR COMPANY 71

Some tweet ideas include announcingmeetups, open source releases, enthusiasm
about a new tool or technique, tips on Git, Unix, and Vim, links to our blog posts,
links to others’ blog posts if they are excellent and not on the current Hacker News
or Twitter cycle at the moment, and Funkmaster Flex.

We have a verified Twitter account and are a Twitter Ads customer. With this we
can see analytics such as number of retweets, favorites, replies, clicks, follows,
unfollows, and how tweets compare in terms of engagement.

Promoted Tweets campaigns are best for short term campaigns to drive traffic to a
website. Target 10-25 similar, relevant @usernames in each campaign. Create dif-
ferent campaigns for different themes of people so that we can track performance
per theme.

Research

We track our ongoing experiments in a “Research” Trello board:

Figure 2.4: Research Trello board

We rigorously conduct experiments on new tools and techniques. Once an exper-
iment has concluded we try to share the results in the appropriate channels. That

http://ads.twitter.com

CHAPTER 2. OUR COMPANY 72

may be this Playbook, our blog, twitter, or elsewhere.

Open Source

We’ve created a number of open source libraries to help us perform common tasks
and give back to the community.

Our open source libraries do better when there’s one person that really steps up
to maintain them. Each of our repositories has a leader that tries to keep the
repositorymoving forward. The leader doesn’t necessarily do the bulk of the actual
work; responsibilities include:

• Understand the underlying code and goal of the library
• Review and merge pull requests
• Respond to and close issues
• Push new releases of gems when appropriate
• Encourage people to take on useful tasks for the library
• Blog, tweet, and otherwise advertise new releases and tips

We track the current open source leaders on our Investment Time Trello Board.

Every thoughtbot developer, designer, and apprentice has commit access to our
open source repositories. We follow these guidelines:

• You may want to check with the project leader to see what would be most
useful, or whether or not they’re on board with your idea.

• Send pull requests rather than committing straight to master.
• Try helping out with existing pull requests or bug reports.
• Documentation patches are a great way to get familiar with a project.

Got an idea for a new library? Found something useful in a client project that you
think is reusable? Great! Some guidelines:

• Extractions are more likely to be useful than Brave New World ideas, be-
cause you’re extracting something that has already proven useful once.

https://github.com/thoughtbot

CHAPTER 2. OUR COMPANY 73

• If you create a new library, you’re expected to lead it, at least for the begin-
ning of its life. Make sure you have time to maintain it.

• Try not to duplicate something that’s already been done well. Look around
to make sure your problem hasn’t already been solved.

• Fixing bugs that affect client projects or introducing small features that
would really help a client project is fine during client time. Most open
source work should be conducted during investment time.

• Think about whether your idea makes more sense as a pull request to an
existing project.

Goodbye

thoughtbot is primarily a group of people who care about making awesome prod-
ucts. We hope the practices we’ve shared here will be helpful to you.

Thank you for reading.

74

	Hello
	Products
	Product Design Sprint
	Prep Work
	Understand
	Diverge
	Converge
	Prototype
	Test and Learn

	Choose Platforms
	Web Apps
	Mobile Apps
	Programming Languages
	Frameworks
	Databases
	Licenses

	Laptop Setup
	Laptop
	Dotfiles
	Text Editor

	Planning
	Daily Standups
	Tasks
	Weekly Meeting
	On-site Customer
	Remote Work
	Altering the Process

	Designing
	Sketches
	Wireframes
	User Interface
	Interaction Design
	Visual Design
	User Interviews & Usability Testing

	Developing
	Version Control
	Style Guide
	Pair Programming
	Test-Driven Development
	Acceptance Tests
	Refactoring
	Code Reviews
	Continuous Integration

	Production
	Checklist
	Domain Names
	SSL Certificates
	Hosting
	Performance Monitoring
	Log Collection
	Error Tracking
	Transactional Email
	Payment Processing

	Measuring
	AARRR
	Instrumentation
	Subscription Metrics
	A/B Testing
	Feature Flags

	Our Company
	Principles
	Principle Zero
	Minimize Hierarchy
	Transparency
	Honesty
	Trust
	Continuous Improvement

	Time
	Consulting
	Investment

	Sales
	Leads
	Understanding Product Vision
	NDAs
	Roles
	No Fixed Bids
	Budget
	Rate
	Typical Projects
	Contract
	Invoices

	Hiring
	Recruiting
	Interviewing
	Offer and Onboarding
	Compensation
	Quarterly Reviews

	Operations
	Expenses
	Email
	Calendar
	Documents
	Meetings
	Accounting
	Legal

	Sharing
	Blog
	Twitter
	Research
	Open Source

	Goodbye

